混合稀釋模型
稀釋作用的實質是污染物在水體中因擴散而降低了濃度,稀釋并不能改變,也不能去除污染物質。但是對 于特定水體的生態(tài)系統(tǒng)而言,當污染物濃度降低到一定程度后,其對該水生環(huán)境或從某種使用角度出發(fā)來 考慮的水質的影響也就很小了,在一定程度上也就能夠滿足環(huán)境或人類的要求,也具有實際意義。
污染物質進入水體后,存在兩種運動形式,一是由于水流的推動而產生的沿著水流前進方向的運動,稱為推流或平流;另一是由于污染物質在水中濃度的差異而形成的污染物從高濃度處向低濃度處的遷移,這一運 動被稱為擴散。廢水排入河流后,由于推流和擴散作用,逐漸與河水相混合,污染物的濃度逐漸降低。 推流和擴散是兩種同時存在而又相互影響的運動形式,其綜合作用的結果是污染物濃度由排放口至水體下 游逐漸減低,即發(fā)生了稀釋。研究水體的稀釋作用時必須注意到,廢水排入水體后并不能與全部河水完全 混合。影響混合的因素很多,主要有;
(1)廢水流量與河水流量的比值。
比值越大,達到完全混合所需的時間就越長,或者說必須通過較長的距離, 才能使廢水與整個河流斷面上的河水達到完全均勻的混合。
(2)廢水排放口的形式。
如廢水在岸邊集中一點排入水體,則達到完全混合所需的時間較長,如廢水分散地
排放至河流中央,則達到完全混合所需的時間較短。
(3)河流的水文條件。
如河流水深、流速、河床彎曲情況以及是否有急流、跌水等都會影響混合程度。 顯然,在沒有達到完全混合的河道斷面上,只有一部分河水參與了對廢水的稀釋。參與混合稀釋的河水流 量與河水總流量之比,稱為混合系數。
河流的生化自凈和氧垂曲線模型
有機污染物進入水體后在微生物作用下逐漸氧化分解為無機物質,從而使有機污染物的濃度大大減少的過程就是水體的生化自凈作用。
生化自凈作用需要消耗水中的溶解氧,所消耗的氧如得不到及時的補充,生化自凈過程就要停止,水體水 質就要惡化。因此,生化自凈過程實際上包括了氧的消耗(耗氧)和氧的補充(復氧)兩方面的作用。
氧的消耗過程主要決定于排入水體的有機污染質的數量,也要考慮排入水體中氨氮的數量,以及廢水中無 機性還原物質(如SO32-)的數量。氧的補充和恢復一般有以下兩個途徑:①大氣中的氧向含氧不足(低于飽 和溶解氧)的水體擴散,使水體中的溶解氧增加;②水生植物在陽光照射下進行光合作用放出氧氣。
水體中有機污染物的種類繁多,不同污染物的毒性和危害也各不相同,因此,不能僅用水體中某一種或幾 種有機污染物的濃度大小來評價水體的污染程度,為此,在前一章中提出可以用一些綜合的水質指標,如 生化需氧量BOD 等來反映水體受有機物質污染的水平。BOD 值越高,說明水中有機污染物越多。因此, 水體中有機污染物的生化自凈過程,可以用水體的BOD 值隨時間的衰減變化規(guī)律來反映。
若不考慮硝化作用、底泥的分解、水生植物的光合作用及有機物的沉降作用等,而將有機污染物的自凈衰 減過程簡化為僅由好氧微生物參加的生化降解反應,并且認為這種反應符合一級反應動力學,那么: 河流接受有機廢水后,從受污點至下游各斷面的累積耗氧量曲線、累積復氧量曲線和虧氧變化曲線(氧垂曲 線)。受污染前,河水中的溶解氧幾乎飽和,虧氧接近于零。在受到污染后,開始時河水中的有機物大量增 加,好氧分解劇烈,耗氧速率超過復氧速率,河水中的溶解氧下降,虧氧量增加。
隨著有機物因分解而減少,耗氧速率逐漸減慢,終于等于復氧速率,河水中的溶解氧達到最低點。接著,耗氧速率低于復氧速率,河水溶解氧逐漸回升。最后,河水溶解氧恢復或接近飽和狀態(tài)。當有機物污染程度超過河流的自凈能力時,河流將出現無氧河段,這時開 始厭氧分解,河水出現黑色,產生臭氣,河流的氧垂曲線發(fā)生中斷現象。
氧垂曲線的形狀會因排放的有機污染物量、廢水和河水的流量、河道的彎曲情況、水流速度等因素而有一 定的差別,例如當河流受到的污染負荷較輕時,最缺氧點距排放口的距離較遠,其時的溶解氧濃度也較高; 當河流受到的污染負荷較重時,最缺氧點將很快出現,該點的溶解氧濃度也會很低。
當溶解氧低于4mg/L 時,河道中局部地段的魚類生長將受到影響,當溶解氧達到零時,河水出現厭氧狀態(tài)。 這種情況下的氧垂曲線將是一條被橫坐標切斷的曲線,有時甚至不可能再通過復氧作用而重新出現溶解氧。 這是最嚴重的水污染狀況,此時的水體不僅將魚蝦絕跡,也將喪失一切使用功能。
編輯推薦:
2014年環(huán)保工程師考試教材《基礎知識》輔導資料
2014年環(huán)保工程師污染物凈化系統(tǒng)輔導資料匯總
更多關注:
環(huán)保工程師考試報名時間 環(huán)保工程師考試培訓 環(huán)保工程師報考條件 環(huán)保工程師合格標準
(責任編輯:中大編輯)